organic compounds

T = 298 (2) K

 $0.30 \times 0.25 \times 0.20$ mm

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4aS*,10aR*)-7-Hydroxy-8-isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10aoctahydrophenanthren-2-one

Abdellah Zeroual,^a Noureddine Mazoir,^a Moha Berraho,^b* Aziz Auhmani^a and Ahmed Benharref^a

^aLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences Semlalia, BP 2390, Boulevard My Abdellah, 40000 Marrakech, Morocco, and ^bLaboratoire de Chimie de Coordination, Unité Matériaux, Faculté des Sciences Semlalia, BP 2390, Boulevard My Abdellah, 40000 Marrakech, Morocco Correspondence e-mail: mberraho@vahoo.fr

Received 1 June 2007; accepted 10 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.125; data-to-parameter ratio = 12.3.

The title compound, $C_{20}H_{28}O_2$, is a new totarolone which was isolated from *Tetraclinis articulata* wood. The molecule forms an extended sheet of three fused rings which exhibit different conformations. The non-aromatic oxo-substituted ring has a screw boat conformation, while the central ring has a half-chair conformation. Molecules are linked to each other by intermolecular $O-H \cdots O$ hydrogen bonds involving carbonyl and hydroxyl groups.

Related literature

For related literature, see: Atta-Ur-Rahman & Choudary (1999); Barrero *et al.* (2003); Bellakhdar (1997); Comte *et al.* (1995); Cremer & Pople (1975); Evidente *et al.* (1997); Lawsen *et al.* (1988); Macias *et al.* (2000); Panter *et al.* (2002); Vlietinck (1987); Zeroual *et al.* (2007).

Experimental

Crystal data

$C_{20}H_{28}O_2$	b = 14.2273 (9) Å
$M_r = 300.42$	c = 8.3860 (4) Å
Monoclinic, P2 ₁	$\beta = 96.952 \ (4)^{\circ}$
a = 7.1873 (4) Å	V = 851.21 (8) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

Data collection

Bruker–Nonius KappaCCD area-	2537 independent reflections		
detector diffractometer	2329 reflections with $I > 2\sigma(I)$		
Absorption correction: none	$R_{int} = 0.034$		
Refinement			

 $R[F^2 > 2\sigma(F^2)] = 0.045$ H atoms treated by a mixture of
independent and constrained
refinementS = 1.09refinement2537 reflections $\Delta \rho_{max} = 0.19$ e Å⁻³
 $\Delta \rho_{min} = -0.19$ e Å⁻³1 restraint $\Delta \rho_{max} = 0.19$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1\!-\!H\!\cdot\cdot\!O2^i$	0.81 (4)	2.06 (4)	2.799 (3)	152 (4)

Symmetry code: (i) x - 1, y, z + 1.

Data collection: *COLLECT* (Bruker–Nonius, 2006); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2003).

The authors thank Professor Michel Giorgi for collecting the data, and Professor Nouzha Bouhmaida and Professor J.-C. Daran for fruitful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2088).

References

- Atta-Ur-Rahman & Choudary, M. I. (1999). Nat. Prod. Rep. 16, 619-635.
- Barrero, A. F., Quílez del Moral, J. F., Lucas, R., Payá, M., Akssira, M., Akkad, S. & Mellouki, F. (2003). J. Nat. Prod. 66, 844–850.
- Bellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.
- Bruker-Nonius (2006). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
- Comte, G., Allais, D. P., Simon, A., Es-Saady, D., Chulia, A. J., Delage, C. & Saux, M. (1995). J. Nat. Prod. 58, 239–243.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Evidente, A., Sparapano, L., Fierro, O., Bruno, G., Giordano, F. & Motta, A. (1997). *Phytochemistry*, 45, 705–713.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lawsen, D. R., Danehower, D. A., Shilling, D. G., Menetrez, M. L. & Spurr, H. W. (1988). Am. Chem. Soc. Symp. Ser. 380, 363–377.
- Macias, F. A., Simonet, A. M., Pacheco, P. C., Berrero, A. F., Cabera, E. & Jiménez- Gonzalez, D. (2000). J. Agric. Food Chem. 48, 3003–3007.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

- Panter, K. E., Manners, G. D., Stegelmeier, B. L., Lee, S., Gardner, D. R., Ralphs, M. H., Pfister, J. A. & James, L. F. (2002). *Biochem. Syst. Ecol.* **30**, 113–128.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Vlietinck, A. (1987). Biologically Active Natural Products, edited by K. Hostettmann & P. J. Lea, pp. 33-47. Oxford University Press. Zeroual, A., Mazoir, N., Maya, C. M., Berraho, M., Auhmani, A. & Benharref,
- A. (2007). Acta Cryst. E63, o2915.

Acta Cryst. (2007). E63, o3497-o3498 [doi:10.1107/S1600536807033594]

(4aS*,10aR*)-7-Hydroxy-8-isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-2-one

A. Zeroual, N. Mazoir, M. Berraho, A. Auhmani and A. Benharref

Comment

Natural products, through evolution of producing organisms have many biological activities that are manifested through an array of different molecular target sites. Thus, diterpenoids isolated from plants have good pharmacological activities (Atta-Ur-Rahman & Choudary, 1999, Panter *et al.*, 2002). The duvatriene-diols from tobacco leaf surfaces are phytotoxics to serious weed *Echinocloa crus-galli* (Lawsen *et al.*, 1988). Some of them have been suggested as herbicides (Macias *et al.*, 2000). In our study, we are interested to the aromatic and medicinal plant: *Tetraclinis articulata* which was subsequently used in traditional medicine (Bellakhdar, 1997). Some of its oxygenated compounds are effective as an antibiotic (Vlietinck, 1987), antifongic (Evidente *et al.*, 1997), cytotoxic (Comte *et al.*, 1995) and inhibit various human leukocyte functions (Barrero *et al.*, 2003). In order to isolate similar compounds, we have studied the hexanic extract of *Tetraclinis articulata* wood. Thus, extraction with hexane using a soxhlet apparatus allow us to isolate compound (I), new diterpenic isomer of (4aS,6cS)-8-Hydroxy-9-isopropyl-4,4,6c-trimethyl-1,2,3,4,4a,5,6, 6c-octahydrophenanthren-3-one (Zeroual *et al.*, 2007). The structure of (I) was established by ¹H and ¹³C NMR and confirmed by its single-crystal X-ray structure.

The molecule (I) is built up from three fused six-membered rings. The non aromatic oxo-substituted ring has a screw boat conformation, as indicated by the total puckering amplitude QT = 0.63 (2)Å and spherical polar angle $\theta = -82.16$ (2)° with $\varphi = 76.89$ (2)°. While the central ring has a half chair conformation with QT = 0.53 (2) Å, $\theta = 127.66$ (2)°, $\varphi = 151.53$ (2)° (Cremer & Pople, 1975). Molecules are linked by intermolecular O—H…O hydrogen bonds (Table 1, Figure 2) involving the carbonyl and the hydroxyl groups and propagate in chain parallel to the (101) plane.

Experimental

Continuous extraction with hexane employing a soxhlet apparatus during 48 h of *Tetraclinis articulata* wood let us, after evaporation of hexane and chromatography using silica gel column with hexane/ethyl acetate (97/3) as an eluent, to isolate compound (I) in 75% yield. Suitable crystals of (I) were obtained by evaporation of a dichloromethane solution at 277 K. m.p. = 444–445 K (dichloromethane); Spectroscopic analysis: ¹H NMR (300 MHz, CDCl₃, δ , p.p.m.): 2.21 (2*H*, H3, m), 2.04 (2*H*, H4, m), 6.90 (1*H*, H5, d, J = 8.4 Hz), 6.50 (1*H*, H6, d, J = 8.4 Hz), 4.85 (OH, s), 2.85 (2*H*, H9, m), 1.56 (2*H*, H10, m), 1.78 (1*H*, H10*a*, dd, J1 = 10.7 Hz, J2 = 1.9 Hz), 3.10 (1*H*, H11, m), 1.28 (3*H*, H12, d, J = 10 Hz), 1.30 (3*H*, H13, d, J = 10 Hz), 1.42 (3*H*, H14, s), 1.11 (3*H*, H15, s), 1.08 (3*H*, H16, s); ¹³C NMR (75 MHz, CDCl₃, δ , p.p.m.): 47.5 (C1), 218.5 (C2), 38.3 (C3), 34.8 (C4), 37.5 (C4a), 131.3 (C4b), 124.0 (C5), 115.0 (C6), 152.9 (C7), 159.6 (C8), 140.1 (C8a), 28.9 (C9), 21.0 (C10), 49.8 (C10*a*), 26.8 (C11), 20.1 (C12), 20.2 (C13), 22.4 (C14), 24.8 (C15), 21.2 (C16).

Refinement

Except H11 and O—H hydrogen atom, which were placed by Fourier synthesis C11—H11=0.99 (4) Å; O—H = 0.81 (4) Å), all H atoms attached to carbon atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic),

0.96Å (methyl), 0.97 Å (methylene), and 0.98Å (methine) with $U_{iso}(H) = 1.2U_{eq}(aromatic, methylene, methine and OH)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1. : Molecular structure of compound (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. : Partial packing view showing the O—H···O interactions (dashed lines) and the formation of a chain parallel to the (101) plane. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -1 + x, y, 1 + z]

(4aS*,10aR*)-7-Hydroxy-8-isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a- octahydrophenanthren-2-one

Crystal data	
$C_{20}H_{28}O_2$	$F_{000} = 328$
$M_r = 300.42$	$D_{\rm x} = 1.172 \ {\rm Mg \ m^{-3}}$
Monoclinic, P2 ₁	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 2550 reflections
a = 7.1873 (4) Å	$\theta = 3.5 - 30.0^{\circ}$
<i>b</i> = 14.2273 (9) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 8.3860 (4) Å	T = 298 (2) K
$\beta = 96.952 \ (4)^{\circ}$	Prism, colourless
$V = 851.21 (8) \text{ Å}^3$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
7 = 2	

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer	2329 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.034$
Monochromator: graphite	$\theta_{max} = 30.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.9^{\circ}$
φ and ω scans	$h = 0 \rightarrow 10$
Absorption correction: none	$k = 0 \rightarrow 20$
10680 measured reflections	$l = -11 \rightarrow 11$
2537 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_0^2) + (0.0779P)^2 + 0.0844P]$ where $P = (F_0^2 + 2F_0^2)/3$
$wR(F^2) = 0.126$	$(\Delta/\sigma)_{\text{max}} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
2537 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
207 parameters	Extinction correction: none
1 restraint	Absolute structure: unknown - see Supplementary Materials - Refinement section
Primary atom site location: structure-invariant direct methods	Flack parameter:

Secondary atom site location: difference Fourier map Rogers parameter:

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates a	and isotropic of	· equivalent isotropic	displacement parameters (\AA^2)	ļ

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Н	0.542 (5)	0.581 (3)	0.585 (4)	0.069 (10)*
H11	0.665 (4)	0.334 (3)	0.265 (4)	0.068 (9)*
C1	1.2274 (3)	0.52902 (14)	-0.1588 (2)	0.0380 (4)
C2	1.3486 (3)	0.61648 (15)	-0.1271 (2)	0.0398 (4)
C3	1.3735 (3)	0.6564 (2)	0.0381 (3)	0.0542 (6)
H3A	1.4179	0.7205	0.0311	0.065*
H3B	1.4722	0.6212	0.1009	0.065*
C4	1.2054 (3)	0.65802 (17)	0.1310 (3)	0.0471 (5)
H4A	1.1733	0.7230	0.1499	0.057*
H4B	1.2404	0.6289	0.2349	0.057*
C4A	1.0296 (2)	0.60751 (12)	0.0471 (2)	0.0330 (3)
C4B	0.8971 (2)	0.58501 (12)	0.1734 (2)	0.0332 (3)
C5	0.8517 (3)	0.65705 (14)	0.2743 (2)	0.0411 (4)
H5	0.8987	0.7170	0.2608	0.049*
C6	0.7385 (3)	0.64173 (15)	0.3939 (2)	0.0448 (4)
H6	0.7078	0.6913	0.4582	0.054*
C7	0.6712 (3)	0.55241 (15)	0.4172 (2)	0.0428 (4)
C8	0.7087 (3)	0.47748 (13)	0.3179 (2)	0.0371 (4)
C8A	0.8209 (2)	0.49546 (13)	0.1932 (2)	0.0330 (3)

C9	0.8596 (3)	0.41598 (13)	0.0819 (2)	0.0394 (4)
H9A	0.9486	0.3730	0.1394	0.047*
H9B	0.7442	0.3816	0.0514	0.047*
C10	0.9367 (3)	0.44883 (15)	-0.0687 (2)	0.0412 (4)
H10A	0.8390	0.4804	-0.1389	0.049*
H10B	0.9793	0.3952	-0.1258	0.049*
C10A	1.0988 (2)	0.51580 (12)	-0.02329 (19)	0.0333 (3)
H10	1.1775	0.4853	0.0654	0.040*
C11	0.6362 (3)	0.37951 (16)	0.3478 (3)	0.0441 (4)
C12	0.4239 (4)	0.3730 (2)	0.3432 (4)	0.0662 (7)
H12A	0.3892	0.3092	0.3627	0.099*
H12B	0.3653	0.3926	0.2396	0.099*
H12C	0.3836	0.4131	0.4245	0.099*
C13	0.7334 (5)	0.3358 (2)	0.5020 (4)	0.0752 (9)
H13A	0.6838	0.2741	0.5154	0.113*
H13B	0.7120	0.3744	0.5920	0.113*
H13C	0.8656	0.3316	0.4956	0.113*
C14	0.9273 (3)	0.67265 (15)	-0.0801 (3)	0.0469 (5)
H14A	0.8182	0.6413	-0.1323	0.070*
H14B	1.0095	0.6884	-0.1582	0.070*
H14C	0.8902	0.7290	-0.0296	0.070*
C15	1.3668 (3)	0.44607 (19)	-0.1482 (3)	0.0574 (6)
H15A	1.2991	0.3882	-0.1670	0.086*
H15B	1.4370	0.4447	-0.0433	0.086*
H15C	1.4511	0.4537	-0.2277	0.086*
C16	1.1232 (3)	0.5328 (2)	-0.3292 (2)	0.0567 (6)
H16A	1.0469	0.4776	-0.3484	0.085*
H16B	1.2124	0.5354	-0.4055	0.085*
H16C	1.0450	0.5877	-0.3403	0.085*
01	0.5674 (3)	0.53377 (15)	0.5392 (2)	0.0646 (5)
O2	1.4340 (3)	0.65004 (15)	-0.2306 (2)	0.0618 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0377 (8)	0.0433 (9)	0.0349 (7)	-0.0009(7)	0.0115 (6)	-0.0001 (7)
C2	0.0321 (8)	0.0469 (10)	0.0419 (9)	-0.0007 (7)	0.0105 (7)	0.0037 (8)
C3	0.0420 (10)	0.0700 (15)	0.0520 (11)	-0.0190 (11)	0.0122 (8)	-0.0117 (11)
C4	0.0409 (9)	0.0522 (11)	0.0501 (10)	-0.0126 (9)	0.0134 (8)	-0.0140 (9)
C4A	0.0323 (7)	0.0311 (8)	0.0374 (8)	-0.0010 (6)	0.0109 (6)	-0.0013 (6)
C4B	0.0318 (7)	0.0329 (8)	0.0364 (8)	0.0007 (6)	0.0096 (6)	-0.0019 (6)
C5	0.0442 (9)	0.0332 (8)	0.0485 (10)	-0.0014 (8)	0.0158 (7)	-0.0053 (8)
C6	0.0502 (10)	0.0429 (10)	0.0441 (9)	0.0036 (8)	0.0174 (8)	-0.0090 (8)
C7	0.0456 (10)	0.0486 (11)	0.0371 (9)	0.0021 (8)	0.0166 (7)	-0.0007 (8)
C8	0.0405 (9)	0.0358 (9)	0.0365 (8)	-0.0020 (7)	0.0111 (7)	0.0016 (7)
C8A	0.0325 (7)	0.0332 (8)	0.0343 (7)	0.0013 (6)	0.0084 (6)	-0.0006 (6)
C9	0.0464 (9)	0.0308 (8)	0.0441 (9)	-0.0048 (7)	0.0177 (7)	-0.0041 (7)
C10	0.0459 (9)	0.0392 (9)	0.0410 (9)	-0.0073 (8)	0.0163 (7)	-0.0085 (7)

C10A	0.0341 (7)	0.0334 (8)	0.0340(7)	0.0004 (6)	0.0105 (6)	-0.0009 (6)
C11	0.0513 (11)	0.0418 (10)	0.0414 (9)	-0.0049(8)	0.0141 (8)	0.0063 (8)
C12	0.0557 (13)	0.0660 (16)	0.0774 (17)	-0.0132(12)	0.0109 (12)	0.0178 (13)
C13	0.089 (2)	0.0552 (15)	0.0755 (17)	-0.0051 (14)	-0.0143 (15)	0.0209 (14)
C14	0.0488 (10)	0.0403 (10)	0.0529 (11)	0.0029 (8)	0.0117 (9)	0.0112 (8)
C15	0.0601 (13)	0.0531 (12)	0.0656 (14)	0.0122 (11)	0.0343 (11)	0.0053 (11)
C16	0.0524 (11)	0.0832 (17)	0.0358 (9)	-0.0141 (12)	0.0105 (8)	-0.0057 (10)
01	0.0843 (13)	0.0630 (11)	0.0551 (9)	-0.0062 (10)	0.0440 (9)	-0.0062 (9)
O2	0.0670 (10)	0.0661 (11)	0.0576 (9)	-0.0202 (9)	0.0293 (8)	-0.0013 (8)
Geometric paran	notors (Å °)					
	ielers (A,)		~ ~ ~	~		
C1—C2		1.524 (3)	C9—(210	1.513	(3)
CI-CI6		1.532 (3)	C9—1	H9A	0.970	0
CI-CI5		1.544 (3)	C9—1	H9B	0.970	0
CI-CI0A		1.560 (2)	C10-	-CI0A	1.518	(2)
$C_{2} = 0_{2}$		1.219 (2)	C10-	-HI0A	0.970	0
$C_2 - C_3$		1.488 (3)	C10-	-HI0B	0.970	0
C3-C4		1.515 (3)	CIUA	—H10	0.980	
C3—H3A		0.9700	C11-	-C12	1.525	(3)
С3—Н3В		0.9700	C11-	-013	1.520	(3)
C4 - C4A		1.347 (3)	C11—	-ПП П12А	0.99	(4)
C4—H4R		0.9700	C12-	-H12A	0.900	0
C4— $C14$		1 532 (3)	C12-	-H12D	0.900	0
C4A = C10A		1.532(5) 1.539(2)	C12-	-1112C	0.900	0
C4A - C4B		1.557(2) 1 541(2)	C13-	-H13R	0.960	0
C4B = C5		1.341(2) 1 392(2)	C13-	-H13C	0.960	0
C4B—C8A		1.392(2) 1 405(2)	C14-	-H14A	0.960	0
C5-C6		1 383 (3)	C14—	-H14B	0.960	0
С5—Н5		0.9300	C14—	-H14C	0.960	0
C6—C7		1 382 (3)	C15-	-H15A	0.960	0
С6—Н6		0.9300	C15-	-H15B	0.960	0
C7—O1		1.363 (2)	C15-	-H15C	0.960	0
C7—C8		1.399 (3)	C16—	-H16A	0.960	0
C8—C8A		1.419 (2)	C16—	-H16B	0.960	0
C8—C11		1.519 (3)	C16—	-H16C	0.960	0
C8A—C9		1.513 (2)	01—1	Н	0.81	(4)
C2-C1-C16		109.82 (18)	H9A-	С9Н9В	107.7	,
C2-C1-C15		105.10 (17)	С9—(C10—C10A	109.3	9 (15)
C16—C1—C15		108.72 (19)	С9—(С10—Н10А	109.8	;
C2-C1-C10A		110.36 (14)	C10A	—C10—H10A	109.8	:
C16-C1-C10A		114.69 (15)	С9—(C10—H10B	109.8	:
C15-C1-C10A		107.67 (15)	C10A	—С10—Н10В	109.8	:
O2—C2—C3		119.9 (2)	H10A	—С10—Н10В	108.2	
O2—C2—C1		121.45 (19)	C10—	-C10AC4A	110.7	7 (14)
C3—C2—C1		118.43 (17)	C10—	-C10AC1	113.4	2 (14)
C2—C3—C4		118.09 (17)	C4A-	C10AC1	115.1	0 (14)
С2—С3—НЗА		107.8	C10—	-C10A—H10	105.5	

С4—С3—НЗА	107.8	C4A—C10A—H10	105.5
С2—С3—Н3В	107.8	C1—C10A—H10	105.5
С4—С3—Н3В	107.8	C8—C11—C12	114.4 (2)
НЗА—СЗ—НЗВ	107.1	C8—C11—C13	112.5 (2)
C3—C4—C4A	114.68 (16)	C12—C11—C13	110.5 (2)
C3—C4—H4A	108.6	C8—C11—H11	112 (2)
C4A—C4—H4A	108.6	C12-C11-H11	103.9 (17)
C3—C4—H4B	108.6	C13—C11—H11	102.5 (18)
C4A—C4—H4B	108.6	C11—C12—H12A	109.5
H4A—C4—H4B	107.6	C11—C12—H12B	109.5
C14-C4A-C10A	113.31 (15)	H12A—C12—H12B	109.5
C14—C4A—C4B	108.67 (14)	C11—C12—H12C	109.5
C10A—C4A—C4B	110.03 (13)	H12A—C12—H12C	109.5
C14—C4A—C4	109.42 (16)	H12B-C12-H12C	109.5
C10A—C4A—C4	106.51 (15)	C11—C13—H13A	109.5
C4B—C4A—C4	108.80 (14)	С11—С13—Н13В	109.5
C5—C4B—C8A	118.19 (15)	H13A—C13—H13B	109.5
C5—C4B—C4A	118.32 (15)	C11—C13—H13C	109.5
C8A—C4B—C4A	123.49 (14)	H13A—C13—H13C	109.5
C6—C5—C4B	121.75 (18)	H13B—C13—H13C	109.5
С6—С5—Н5	119.1	C4A—C14—H14A	109.5
C4B—C5—H5	119.1	C4A—C14—H14B	109.5
C7—C6—C5	119.62 (18)	H14A—C14—H14B	109.5
С7—С6—Н6	120.2	C4A—C14—H14C	109.5
С5—С6—Н6	120.2	H14A—C14—H14C	109.5
O1—C7—C6	121.19 (19)	H14B—C14—H14C	109.5
O1—C7—C8	117.43 (19)	C1—C15—H15A	109.5
C6—C7—C8	121.37 (16)	C1—C15—H15B	109.5
C7—C8—C8A	117.96 (16)	H15A—C15—H15B	109.5
C7—C8—C11	120.44 (16)	C1—C15—H15C	109.5
C8A—C8—C11	121.56 (16)	H15A—C15—H15C	109.5
C4B—C8A—C8	120.99 (15)	H15B—C15—H15C	109.5
C4B—C8A—C9	120.11 (15)	C1—C16—H16A	109.5
C8—C8A—C9	118.89 (15)	C1—C16—H16B	109.5
C10—C9—C8A	113.39 (16)	H16A—C16—H16B	109.5
С10—С9—Н9А	108.9	C1—C16—H16C	109.5
С8А—С9—Н9А	108.9	H16A—C16—H16C	109.5
С10—С9—Н9В	108.9	H16B—C16—H16C	109.5
С8А—С9—Н9В	108.9	С7—О1—Н	112 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1—H···O2 ⁱ	0.81 (4)	2.06 (4)	2.799 (3)	152 (4)
Symmetry codes: (i) $x-1$, y , $z+1$.				

Fig. 1

